Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
Add more filters










Publication year range
2.
Mol Brain ; 16(1): 60, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37464359

ABSTRACT

The present study was undertaken to explore the relative contributions of Cav3.2 T-type channels to mediating the antihyperalgesic activity of joint manipulation (JM) therapy. We used the chronic constriction injury model (CCI) to induce peripheral neuropathy and chronic pain in male mice, followed by JM. We demonstrate that JM produces long-lasting mechanical anti-hyperalgesia that is abolished in Cav3.2 null mice. Moreover, we found that JM displays a similar analgesic profile as the fatty acid amide hydrolase inhibitor URB597, suggesting a possible converging mechanism of action involving endocannabinoids. Overall, our findings advance our understanding of the mechanisms through which JM produces analgesia.


Subject(s)
Analgesia , Calcium Channels, T-Type , Mice , Male , Animals , Pain , Hyperalgesia/complications , Analgesics/pharmacology , Analgesics/therapeutic use , Calcium Channels, T-Type/metabolism
3.
Chem Biodivers ; 20(1): e202200715, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36490384

ABSTRACT

The hydroalcoholic extract of Polygala altomontana (30, 100, and 300 mg/kg, i.g.) showed a dose-dependent antinociceptive action during the inflammatory phase of the formalin test. In addition, the preparation (30 and 300 mg/kg, i.g.) showed anti-hyperalgesic action when tested on a mechanical nociception model. UPLC-ESI-QTOF-MS data indicated the active extract contained phenylpropanoid sucrose esters, glycosylated quercetin derivatives, styrylpyrones, and coumarins. Some identified compounds, including styrylpyrones and coumarins, have previously demonstrated antinociceptive action. The results also show that P. altomontana shows potential for developing pain-relieving herbal remedies and drugs.


Subject(s)
Analgesics , Polygala , Analgesics/pharmacology , Analgesics/therapeutic use , Polygala/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Pain/drug therapy , Coumarins/therapeutic use
4.
Braz J Anesthesiol ; 73(5): 626-634, 2023.
Article in English | MEDLINE | ID: mdl-36075468

ABSTRACT

BACKGROUND: The present study investigated the effects of pulsed and continuous ultrasound (USP and USC) in edema and hyperalgesia after chronic inflammatory process induced by Complete Freund's Adjuvant-CFA and analyzing the relationship of the application frequency of ultrasound, in pro- and anti-inflammatory cytokine production. METHODS: Forty-five animals were divided into 9 groups; all animals from groups 2 to 9 were subjected to a persistent inflammation model induced by CFA in mice. We report the effects and the underlying action mechanisms of USP and USC in the animals which were irradiated two, three or five times a week on the left hind paw. The analyses performed in this study were: evaluation of hind paw edema through the plethysmometer, evaluation of thermal hyperalgesia through withdrawal test using a water container at 44.5°C (± 0.5°C), and the plantar region of the left paw which was removed for analysis of cytokines. RESULTS: Our results showed that USP and USC consistently reduced paw edema, and pulsed ultrasound showed a higher significant effect than the continuous mode. Moreover, groups with irradiation frequency of five times a week presented an inhibition of the edema, and groups with frequency of three or two times a week reduced mainly hyperalgesia, in comparison with the control group. The beneficial effects of the US then seem to be associated with upregulation of anti- and pro-inflammatory mediators, such as IL-10 and IL-6, respectively. CONCLUSION: This study provided evidence that ultrasound constitutes an important non-pharmacological intervention for the management of inflammatory and pain states.

5.
Braz. J. Anesth. (Impr.) ; 73(5): 626-634, 2023. tab, graf
Article in English | LILACS | ID: biblio-1520352

ABSTRACT

Abstract Background: The present study investigated the effects of pulsed and continuous ultrasound (USP and USC) in edema and hyperalgesia after chronic inflammatory process induced by Complete Freund's Adjuvant-CFA and analyzing the relationship of the application frequency of ultrasound, in pro- and anti-inflammatory cytokine production. Methods: Forty-five animals were divided into 9 groups; all animals from groups 2 to 9 were subjected to a persistent inflammation model induced by CFA in mice. We report the effects and the underlying action mechanisms of USP and USC in the animals which were irradiated two, three or five times a week on the left hind paw. The analyses performed in this study were: evaluation of hind paw edema through the plethysmometer, evaluation of thermal hyperalgesia through withdrawal test using a water container at 44.5°C (± 0.5°C), and the plantar region of the left paw which was removed for analysis of cytokines. Results: Our results showed that USP and USC consistently reduced paw edema, and pulsed ultrasound showed a higher significant effect than the continuous mode. Moreover, groups with irradiation frequency of five times a week presented an inhibition of the edema, and groups with frequency of three or two times a week reduced mainly hyperalgesia, in comparison with the control group. The beneficial effects of the US then seem to be associated with upregulation of anti- and pro-inflammatory mediators, such as IL-10 and IL-6, respectively. Conclusion: This study provided evidence that ultrasound constitutes an important non-pharmacological intervention for the management of inflammatory and pain states.


Subject(s)
Rats , Ultrasonic Therapy , Rehabilitation , Edema , Pain Management
6.
Behav Brain Res ; 429: 113905, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35490774

ABSTRACT

The flavonoid myricitrin showed an antidepressant-like effect in the tail suspension test and increased hippocampal neurogenesis, as well as demonstrating anti-inflammatory effects. Interestingly, inflammation has been linked to depression, and anti-inflammatory drugs showed promising results as antidepressant-like drugs. Thus, the present study evaluated the effects of myricitrin in the chronic mild stress (CMS) model, a translational and valid animal model of depression, using the mini-experiment design to improve the reproducibility of the findings. The sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST) were the readouts of depressive-like phenotypes induced by CMS. Relative adrenal weight was employed as an index of the hypothalamus-pituitary-adrenal (HPA) axis activation. Interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha levels were measured in the hippocampus. Myricitrin (10 mg/kg, intraperitoneally, for 14 days) reversed depressive-like behaviors induced by CMS (increased immobility in the FST, the TST and anhedonia), as well as decreased adrenal hypertrophy and hippocampal levels of IL-6 in stressed mice. Similar results were observed by imipramine (20 mg/kg, intraperitoneally, for 14 days), a serotonin and norepinephrine reuptake inhibitor (positive control). A significant correlation was observed between immobility time in the TST, and hippocampal IL-6 levels. Hippocampal TNF-α levels were not affected by CMS or drug treatment. In conclusion, myricitrin exhibited an antidepressant-like profile in CMS, and this effect may be associated with its anti-inflammatory activity.


Subject(s)
Antidepressive Agents , Interleukin-6 , Animals , Anti-Inflammatory Agents/pharmacology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Behavior, Animal , Depression/drug therapy , Disease Models, Animal , Flavonoids/pharmacology , Hippocampus , Mice , Reproducibility of Results , Stress, Psychological/drug therapy
7.
Curr Neuropharmacol ; 20(3): 476-493, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-33719974

ABSTRACT

The ability of the nervous system to detect a wide range of noxious stimuli is crucial to avoid life-threatening injury and to trigger protective behavioral and physiological responses. Pain represents a complex phenomenon, including nociception associated with cognitive and emotional processing. Animal experimental models have been developed to understand the mechanisms involved in pain response, as well as to discover novel pharmacological and non-pharmacological anti-pain therapies. Due to the genetic tractability, similar physiology, low cost, and rich behavioral repertoire, the zebrafish (Danio rerio) is a powerful aquatic model for modeling pain responses. Here, we summarize the molecular machinery of zebrafish responses to painful stimuli, as well as emphasize how zebrafish-based pain models have been successfully used to understand specific molecular, physiological, and behavioral changes following different algogens and/or noxious stimuli (e.g., acetic acid, formalin, histamine, Complete Freund's Adjuvant, cinnamaldehyde, allyl isothiocyanate, and fin clipping). We also discuss recent advances in zebrafish-based studies and outline the potential advantages and limitations of the existing models to examine the mechanisms underlying pain responses from evolutionary and translational perspectives. Finally, we outline how zebrafish models can represent emergent tools to explore pain behaviors and pain-related mood disorders, as well as to facilitate analgesic therapy screening in translational pain research.


Subject(s)
Pain , Zebrafish , Analgesics , Animals , Disease Models, Animal , Pain/drug therapy , Translational Research, Biomedical , Zebrafish/genetics
8.
Front Pharmacol ; 12: 788850, 2021.
Article in English | MEDLINE | ID: mdl-34887769

ABSTRACT

The synthesis and antioxidant, antinociceptive and antiedematogenic activities of sulfonamides derived from carvacrol-a druglike natural product-are reported. The compounds showed promising antioxidant activity, and sulfonamide derived from morpholine (S1) demonstrated excellent antinociceptive and antiedematogenic activities, with no sedation or motor impairment. The mechanism that underlies the carvacrol and derived sulfonamides' relieving effects on pain has not yet been fully elucidated, however, this study shows that the antinociceptive activity can be partially mediated by the antagonism of glutamatergic signaling. Compound S1 presented promising efficacy and was predicted to have an appropriate medicinal chemistry profile. Thus, derivative S1 is an interesting starting point for the design of new leads for the treatment of pain and associated inflammation and prooxidative conditions.

9.
Front Neurosci ; 15: 703783, 2021.
Article in English | MEDLINE | ID: mdl-34504414

ABSTRACT

Since the 1970s, when ATP was identified as a co-transmitter in sympathetic and parasympathetic nerves, it and its active metabolite adenosine have been considered relevant signaling molecules in biological and pathological processes in the central nervous system (CNS). Meanwhile, inosine, a naturally occurring purine nucleoside formed by adenosine breakdown, was considered an inert adenosine metabolite and remained a neglected actor on the purinergic signaling scene in the CNS. However, this scenario began to change in the 1980s. In the last four decades, an extensive group of shreds of evidence has supported the importance of mediated effects by inosine in the CNS. Also, inosine was identified as a natural trigger of adenosine receptors. This evidence has shed light on the therapeutic potential of inosine on disease processes involved in neurological and psychiatric disorders. Here, we highlight the clinical and preclinical studies investigating the involvement of inosine in chronic pain, schizophrenia, epilepsy, depression, anxiety, and in neural regeneration and neurodegenerative diseases, such as Parkinson and Alzheimer. Thus, we hope that this review will strengthen the knowledge and stimulate more studies about the effects promoted by inosine in neurological and psychiatric disorders.

10.
Metab Brain Dis ; 36(3): 453-462, 2021 03.
Article in English | MEDLINE | ID: mdl-33394286

ABSTRACT

Stroke is considered one of the leading causes of death worldwide. The treatment is limited; however, the Brazilian flora has a great source of natural products with therapeutic potentials. Studies with the medicinal plant Polygala sabulosa W. Bennett provided evidence for its use as an anti-inflammatory and neuroprotective drug. In the case of ischemic stroke due to lack of oxygen, both acute and chronic inflammatory processes are activated. Thus, we hypothesized that P. sabulosa (HEPs) has the potential to treat the motor and cognitive deficits generated by ischemic stroke. Male mice were subjected to global ischemia for 60 min, followed by reperfusion and orally treated with HEPs (100 mg/kg in saline + 3% tween 20) twice a day (12 h apart) for 48 h starting 3 h after surgery. Motor skills were assessed using grip force and open field tasks. Hippocampi were then collected for mRNA quantification of the cytokines IL-1-ß and TNF-α levels. After 48 h of acute treatment, spatial reference memory was evaluated in a Morris water maze test for another group of animals. We show that HEPs treatment significantly prevented motor weakness induced by ischemia. Brain infarct area was reduced by 22.25% with downregulation of the levels of IL-1ß and TNF-α mRNA. Learning performance and memory ability on Morris water maze task were similar to the sham group. Our data demonstrates the neuroprotective properties of HEPs through its anti-inflammatory activities, which prevent motor and cognitive impairments, suggesting that HEPs may be an effective therapy for ischemic stroke.


Subject(s)
Brain Ischemia/drug therapy , Cognitive Dysfunction/drug therapy , Motor Disorders/drug therapy , Neuroprotective Agents/therapeutic use , Plant Extracts/therapeutic use , Polygala , Animals , Brain Ischemia/metabolism , Cognition/drug effects , Cognitive Dysfunction/metabolism , Disease Models, Animal , Hand Strength , Interleukin-1beta/metabolism , Maze Learning/drug effects , Mice , Motor Disorders/metabolism , Motor Skills/drug effects , Muscle Strength/drug effects , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Tumor Necrosis Factor-alpha/metabolism
11.
Cell Mol Neurobiol ; 41(1): 63-78, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32222846

ABSTRACT

Complex regional pain syndrome type-I (CRPS-I) is a chronic painful condition resulting from trauma. Bradykinin (BK) is an important inflammatory mediator required in acute and chronic pain response. The objective of this study was to evaluate the association between BK receptors (B1 and B2) and chronic post-ischaemia pain (CPIP) development in mice, a widely accepted CRPS-I model. We assessed mechanical and cold allodynia, and paw oedema in male and female Swiss mice exposed to the CPIP model. Upon induction, the animals were treated with BKR antagonists (HOE-140 and DALBK); BKR agonists (Tyr-BK and DABK); antisense oligonucleotides targeting B1 and B2 and captopril by different routes in the model (7, 14 and 21 days post-induction). Here, we demonstrated that treatment with BKR antagonists, by intraperitoneal (i.p.), intraplantar (i.pl.), and intrathecal (i.t.) routes, mitigated CPIP-induced mechanical allodynia and oedematogenic response, but not cold allodynia. On the other hand, i.pl. administration of BKR agonists exacerbated pain response. Moreover, a single treatment with captopril significantly reversed the anti-allodynic effect of BKR antagonists. In turn, the inhibition of BKRs gene expression in the spinal cord inhibited the nociceptive behaviour in the 14th post-induction. The results of the present study suggest the participation of BKRs in the development and maintenance of chronic pain associated with the CPIP model, possibly linking them to CRPS-I pathogenesis.


Subject(s)
Chronic Pain/etiology , Chronic Pain/metabolism , Ischemia/complications , Receptors, Bradykinin/metabolism , Animals , Bradykinin Receptor Antagonists/pharmacology , Cholinesterase Inhibitors/pharmacology , Chronic Pain/genetics , Disease Models, Animal , Female , Gene Expression Regulation/drug effects , Gene Silencing/drug effects , Hyperalgesia/complications , Male , Mice , Nociception/drug effects , Receptors, Bradykinin/genetics , Spinal Cord/pathology
12.
Physiol Behav ; 223: 113013, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32540332

ABSTRACT

Chronic stress is a risk factor for cardiovascular diseases (CVD) and anxiety disorders (AD). Obesity also increases the risk of CVD and AD. The modern lifestyle commonly includes high-fat diet (HFD) intake and daily exposure to stressful events. However, it is not completely understood whether chronic stress exacerbates HFD-induced behavioral and physiological changes. Thus, this study aimed to evaluate the effects of the exposure to chronic variable stress (CVS) on behavioral, cardiovascular, and endocrine parameters in rats fed an HFD. Male Wistar rats were divided into four groups: control-standard chow diet (control-SD), control-HFD, CVS-SD, and CVS-HFD. The control-HFD and CVS-HFD groups were fed with HFD for six weeks. The CVS-HFD and CVS-SD groups were exposed to a CVS protocol in the last ten days of the six weeks. The behavioral analysis revealed that CVS decreased the open-arm exploration time during the elevated plus-maze test (p < 0.05). HFD promoted metabolic disorders and increased angiotensin II and leptin blood levels (p < 0.05). CVS or HFD increased blood pressure and the sympathetic nervous system (SNS) modulation of the heart and vessels and decreased baroreflex activity (p < 0.05). Combining CVS and HFD exacerbated the cardiac SNS response and increased basal heart rate (HR) (p < 0.05). CVS or HFD did not affect vascular function and aorta nitrate (p > 0.05). Taken together, these data indicate a synergism between HFD and CVS on the HR and cardiac SNS responses, suggesting an increased cardiovascular risk. Besides, neuroendocrine and anxiogenic disturbers may contribute to the cardiovascular changes induced by HFD and CVS, respectively.


Subject(s)
Cardiovascular System , Diet, High-Fat , Animals , Baroreflex , Blood Pressure , Diet, High-Fat/adverse effects , Male , Rats , Rats, Wistar
13.
Biomolecules ; 10(5)2020 05 20.
Article in English | MEDLINE | ID: mdl-32443870

ABSTRACT

Depression has a multifactorial etiology that arises from environmental, psychological, genetic, and biological factors. Environmental stress and genetic factors acting through immunological and endocrine responses generate structural and functional changes in the brain, inducing neurogenesis and neurotransmission dysfunction. Terpineol, monoterpenoid alcohol, has shown immunomodulatory and neuroprotective effects, but there is no report about its antidepressant potential. Herein, we used a single lipopolysaccharide (LPS) injection to induce a depressive-like effect in the tail suspension test (TST) and the splash test (ST) for a preventive and therapeutic experimental schedule. Furthermore, we investigated the antidepressant-like mechanism of action of terpineol while using molecular and pharmacological approaches. Terpineol showed a coherent predicted binding mode mainly against CB1 and CB2 receptors and also against the D2 receptor during docking modeling analyses. The acute administration of terpineol produced the antidepressant-like effect, since it significantly reduced the immobility time in TST (100-200 mg/kg, p.o.) as compared to the control group. Moreover, terpineol showed an antidepressant-like effect in the preventive treatment that was blocked by a nonselective dopaminergic receptor antagonist (haloperidol), a selective dopamine D2 receptor antagonist (sulpiride), a selective CB1 cannabinoid receptor antagonist/inverse agonist (AM281), and a potent and selective CB2 cannabinoid receptor inverse agonist (AM630), but it was not blocked by a nonselective adenosine receptor antagonist (caffeine) or a ß-adrenoceptor antagonist (propranolol). In summary, molecular docking suggests that CB1 and CB2 receptors are the most promising targets of terpineol action. Our data showed terpineol antidepressant-like modulation by CB1 and CB2 cannabinoid receptors and D2-dopaminergic receptors to further corroborate our molecular evidence.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antidepressive Agents/therapeutic use , Cannabinoid Receptor Modulators/therapeutic use , Depression/drug therapy , Dopamine Agents/therapeutic use , Monoterpenes/therapeutic use , Animals , Binding Sites , Depression/etiology , Hindlimb Suspension/adverse effects , Lipopolysaccharides/toxicity , Male , Mice , Molecular Docking Simulation , Protein Binding , Receptors, Cannabinoid/chemistry , Receptors, Cannabinoid/metabolism , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/metabolism
14.
Scand J Med Sci Sports ; 30(8): 1369-1378, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32358841

ABSTRACT

As exercise intervention solely for pain reduction is relatively new, the available research still leaves an incomplete picture of responsible mechanisms and pathways. Nonetheless, evidence indicates that exercise-induced analgesia involves activation of the endocannabinoid (eCB) system. The present study investigated the role of the eCB system on the antihyperalgesic effect of high-intensity swimming exercise (HISE) in an animal model of peripheral persistent inflammation. Male Swiss mice were allocated to non-exercised and exercised groups and subjected to subcutaneous intraplantar injection (i.pl.) of a single dose of complete Freund's adjuvant (CFA) to induce inflammatory pain. Cumulative HISE was performed once a day, and mechanical hyperalgesia and edema were evaluated 0.5 hour after HISE for seven consecutive days. To investigate the role of the eCB system on the antihyperalgesic effect of HISE, non-exercised and exercised mice received intraperitoneal (ip), intrathecal (i.t.) or i.pl. injections of vehicle, AM281 (a CB1 cannabinoid receptor antagonist) or AM630 (a CB2 cannabinoid receptor antagonist) from the 3rd to 5th day after CFA injection. Mechanical hyperalgesia was evaluated 0.5 hour after HISE. In addition, the effect of the fatty acid amide hydrolase [FAAH] inhibitor or monoacylglycerol lipase [MAGL] inhibitor on the antihyperalgesic action of HISE was investigated. HISE reduced mechanical hyperalgesia with effects prevented by AM281 or AM630 pretreatment in all delivery routes tested. The inhibition of FAAH and MAGL prolonged the antihyperalgesic effect of HISE. These data demonstrate evidence for the role of the eCB system upon exercise-induced analgesia in a murine model of inflammatory pain.


Subject(s)
Cannabinoid Receptor Antagonists/pharmacology , Endocannabinoids/metabolism , Pain Management/methods , Pain/drug therapy , Swimming/physiology , Animals , Disease Models, Animal , Male , Mice
15.
J Nat Prod ; 83(4): 1190-1200, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32150408

ABSTRACT

Citral ((2E)-3,7-dimethylocta-2,6-dienal), a bioactive component of lemongrass, inhibits oxidant activity, nuclear factor kappa B (NF-κB) activation, and cyclooxygenase-2 (COX-2) expression, even as it activates peroxisome proliferator-activated receptor (PPAR)-α and γ. Additionally, citral produces long-lasting inhibition of transient receptor potential (TRP) channels that are found in sensory neurons, such as TRPV1-3 and TRPM8, while it transiently blocks TRPV4 and TRPA1. Here, the effect of citral in experimental models of acute inflammation and hyperalgesia in mice, and the underlying citral mechanisms of action were investigated. ADMET properties and molecular targets were predicted using the online server. The immunomodulatory and antihyperalgesic effects of citral were evaluated, using mechanical and thermal stimuli, at different time-points on carrageenan, lipopolysaccharides (LPS), and zymosan-induced paw edema and hyperalgesia in mice. ADMET analysis ensures that the citral has not violated Lipinski's rule of five, indicating its safety consumption, and molecular target prediction software identified that citral is a potential fatty acid amide hydrolase (FAAH) inhibitor. Oral treatment with citral (50-300 mg/kg) significantly inhibited carrageenan-induced paw edema and thermal allodynia. Furthermore, citral modulated the inflammation induced by LPS and zymosan, toll-like receptor (TLR) 4, and TLR2/dectin-1 ligands, respectively. Moreover, pretreatment with cannabinoid receptor type 2 (CB2R) antagonists and ATP-sensitive K+ channel inhibitor, but not with a cannabinoid receptor type 1 (CB1R) antagonist, significantly reversed the anti-inflammatory effect of citral. Intriguingly, citral did not cause any relevant action in the central nervous system, and it was safe when assessed in a 14 day toxicity assay in male mice. Therefore, citral constitutes a promising, innovative, and safe molecule for the management of immunoinflammatory conditions and pain states.


Subject(s)
Acyclic Monoterpenes/pharmacology , Adenosine Triphosphate/chemistry , Amidohydrolases/chemistry , Analgesics/pharmacology , Inflammation/metabolism , Lectins, C-Type/chemistry , Monoterpenes/pharmacology , Receptor, Cannabinoid, CB2/chemistry , Toll-Like Receptor 4/chemistry , Amidohydrolases/metabolism , Animals , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Inflammation/drug therapy , Lectins, C-Type/metabolism , Mice , Molecular Structure , Monoterpenes/chemistry , Receptor, Cannabinoid, CB2/therapeutic use , TRPV Cation Channels/chemistry , TRPV Cation Channels/metabolism , Toll-Like Receptor 2
16.
Eur Neuropsychopharmacol ; 32: 66-76, 2020 03.
Article in English | MEDLINE | ID: mdl-31948829

ABSTRACT

Acute ethanol (EtOH) consumption exerts a biphasic effect on behavior and increases serotonin levels in the brain. However, the molecular mechanisms underlying alcohol-mediated behavioral responses still remain to be fully elucidated. Here, we investigate pharmacologically the involvement of the serotonergic pathway on acute EtOH-induced behavioral changes in zebrafish. We exposed zebrafish to 0.25, 0.5, 1.0% (v/v) EtOH for 1 h and analyzed the effects on aggression, anxiety-like behaviors, and locomotion. EtOH concentrations that changed behavioral responses were selected to the subsequent experiments. As a pharmacological approach, we used pCPA (inhibitor of tryptophan hydroxylase), WAY100135 (5-HT1A antagonist), buspirone (5-HT1A agonist), CGS12066A and CGS12066B (5-HT1B antagonist and agonist, respectively), ketanserin (5-HT2A antagonist) and (±)-DOI hydrochloride (5-HT2A agonist). All serotonergic receptors tested modulated aggression, with a key role of 5-HT2A in aggressive behavior following 0.25% EtOH exposure. Because CGS12066B mimicked 0.5% EtOH anxiolysis, which was antagonized by CGS12066A, we hypothesized that anxiolytic-like responses are possibly mediated by 5-HT1B receptors. Conversely, the depressant effects of EtOH are probably not related with direct changes on serotonergic pathway. Overall, our novel findings demonstrate a role of the serotonergic system in modulating the behavioral effects of EtOH in zebrafish. These data also reinforce the growing utility of zebrafish models in alcohol research and help elucidate the neurobiological mechanisms underlying alcohol abuse and associated complex behavioral phenotypes.


Subject(s)
Aggression/drug effects , Anxiety/chemically induced , Anxiety/metabolism , Disease Models, Animal , Ethanol/toxicity , Serotonin/metabolism , Aggression/physiology , Animals , Brain/drug effects , Brain/metabolism , Dose-Response Relationship, Drug , Ethanol/administration & dosage , Female , Male , Receptors, Serotonin/metabolism , Serotonin Antagonists/administration & dosage , Serotonin Receptor Agonists/administration & dosage , Zebrafish
17.
Brain Behav Immun Health ; 7: 100118, 2020 Aug.
Article in English | MEDLINE | ID: mdl-34589875

ABSTRACT

Lesions of peripheral nerves lead to pain, hyperalgesia, and psychological comorbidities. However, the relationship between mood disorders and neuropathic pain is unclear, as well as the underlying mechanisms related to these disorders. Therefore, we investigated if nerve injury induces depression, anxiety, and cognitive impairment and if there were changes in cytokines, growth factors, and glial cell activation in cortical sites involved in processing pain and mood in animals with nerve injury. Nerve injury was induced by partial sciatic nerve ligation (PSNL) in male Swiss mice and compared to sham-operated animals. Nociceptive behavioral tests to mechanical and thermal (heat and cold) stimuli confirmed the development of hyperalgesia. We further examined mood disorders and memory behaviors. We show nerve injury induces a decrease in mechanical withdrawal thresholds and thermal latency to heat and cold. We also show that nerve injury causes depressive-like and anxiety-like behaviors as well as impairment in short-term memory in mice. There were increases in proinflammatory cytokines as well as Brain-Derived Neurotrophic Factor (BDNF) in the injured nerve. In the spinal cord, there were increases in both pro and anti-inflammatory cytokines, as well as of BDNF and Nerve Growth Factor (NGF). Further, in our data was a decrease in the density of microglia and astrocytes in the hippocampus and increased microglial density in the prefrontal cortex, areas associated with neuropathic pain conditions.

18.
Brain Sci ; 9(8)2019 Aug 10.
Article in English | MEDLINE | ID: mdl-31405150

ABSTRACT

Complex regional pain syndrome type I (CRPS-I) is a chronic painful condition. We investigated whether manual therapy (MT), in a chronic post-ischemia pain (CPIP) model, is capable of reducing pain behavior and oxidative stress. Male Swiss mice were subjected to ischemia-reperfusion (IR) to mimic CRPS-I. Animals received ankle joint mobilization 48h after the IR procedure, and response to mechanical stimuli was evaluated. For biochemical analyses, mitochondrial function as well as oxidative stress thiobarbituric acid reactive substances (TBARS), protein carbonyls, antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) levels were determined. IR induced mechanical hyperalgesia which was subsequently reduced by acute MT treatment. The concentrations of oxidative stress parameters were increased following IR with MT treatment preventing these increases in malondialdehyde (MDA) and carbonyls protein. IR diminished the levels of SOD and CAT activity and MT treatment prevented this decrease in CAT but not in SOD activity. IR also diminished mitochondrial complex activity, and MT treatment was ineffective in preventing this decrease. In conclusion, repeated sessions of MT resulted in antihyperalgesic effects mediated, at least partially, through the prevention of an increase of MDA and protein carbonyls levels and an improvement in the antioxidant defense system.

19.
Behav Brain Res ; 359: 570-578, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30296529

ABSTRACT

Pain, a severely debilitating symptom of many human disorders, is a growing, unmet biomedical problem. Although the use of zebrafish (Danio rerio) to investigate both behavioral and physiological nociception-related responses is expanding rapidly, the characterization of behavioral phenotypes that reflect injury location is limited, making the results of such studies difficult to interpret. Here, we characterize putative nociception-related behavioral phenotypes in adult zebrafish following an intraperitoneal (i.p.) administration of acetic acid, a well-established protocol for visceral pain in rodents. Acetic acid (2.5 and 5.0%) induced an abdominal constriction-like response, which was assessed by measuring a body curvature index. Moreover, all doses tested (0.5-5.0%) reduced distance traveled and vertical activity in the novel tank test. Freezing duration increased following 5.0% acetic acid, whereas fish injected with 1.0, 2.5, and 5.0% spent more time in top area of the tank. Both morphine (an opioid analgesic) and diclofenac (a nonsteroidal anti-inflammatory drug, NSAID) prevented the 5.0% acetic acid-induced changes in body curvature index, whereas naloxone blocked these effects of morphine. Overall, zebrafish exposed to a single acetic acid i.p. injection display abnormal body curvature and specific changes in behavioral parameters sensitive to anti-nociceptive pharmacological modulation. We suggest that the abdominal constriction-like response represents a novel specific nociceptive-related phenotype in zebrafish. In general, our findings support the growing utility of zebrafish in translational pain research and antinociceptive drug discovery.


Subject(s)
Disease Models, Animal , Nociception , Visceral Pain , Zebrafish , Acetic Acid , Analgesics, Opioid/pharmacology , Animals , Animals, Outbred Strains , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Behavior, Animal/drug effects , Diclofenac/pharmacology , Drug Discovery , Drug Interactions , Female , Male , Morphine/pharmacology , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Nociception/drug effects , Posture , Random Allocation , Visceral Pain/drug therapy , Visceral Pain/physiopathology
20.
Inflammation ; 41(6): 2060-2067, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30030654

ABSTRACT

In this study, we evaluated the effects of high-intensity swimming in an experimental model of acute lung injury (ALI) induced by lipopolysaccharide (LPS) on lung inflammation and antioxidant defenses. Balb/C male mice were submitted to exercise (30 min/day, 5 days/week, for a period of 3 weeks) prior to LPS instillation in the lung. Twenty-four hours after delivery of LPS (10 µg/animal), mice were euthanized and bronchoalveolar fluid (BALF) was obtained for cell counting and analysis of cytokines by ELISA. Lung tissue was used to evaluate antioxidant defenses. LPS instillation resulted in an increase in total and mononuclear cells, IL-1ß, TNF-α, and IL-6 in BALF. LPS instillation also altered IL-10 and IL-ra levels in BALF and induced antioxidant defenses (glutathione, superoxide dismutase, catalase, and glutathione peroxidase) in the lung. Protein carbonyl increased in the LPS-treated animals. High-intensity swimming prevented all these changes induced by LPS. Significance: Therefore, this experimental protocol of high-intensity swimming showed a protective effect on ALI, decreasing inflammatory processes and preventing disturbances in antioxidant defenses into the lungs.


Subject(s)
Antioxidants/metabolism , Cytokines/metabolism , Lipopolysaccharides/pharmacology , Physical Conditioning, Animal/physiology , Pneumonia/metabolism , Acute Lung Injury/chemically induced , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Male , Mice , Mice, Inbred BALB C , Pneumonia/chemically induced , Swimming
SELECTION OF CITATIONS
SEARCH DETAIL
...